The literature abounds with findings that collectively may offer important new insights for the betterment of the medical, psychological and life sciences, to name just a few. This subject is designed to provide students with the ability to combine estimated measures of evidence, known as effects, from comparable studies to increase power. Estimators are introduced which are commonly found in meta-analytic research and pitfalls are discussed. On completion of the subject, the student will have an understanding of the different effects that can be collected from the literature as well as an appreciation of how effect sizes arising from data measured on different scales can be combined. Importantly, this subject also shows students how meta-regression can be used to account for study-specific covariates that cannot be adequately accounted for using random-effects models. The freely available software packages R and RevMan are used throughout the subject.